Parsing Syntactic and Semantic Dependencies for Multiple Languages with A Pipeline Approach
نویسندگان
چکیده
This paper describes a pipelined approach for CoNLL-09 shared task on joint learning of syntactic and semantic dependencies. In the system, we handle syntactic dependency parsing with a transition-based approach and utilize MaltParser as the base model. For SRL, we utilize a Maximum Entropy model to identify predicate senses and classify arguments. Experimental results show that the average performance of our system for all languages achieves 67.81% of macro F1 Score, 78.01% of syntactic accuracy, 56.69% of semantic labeled F1, 71.66% of macro precision and 64.66% of micro recall.
منابع مشابه
A Pipeline Approach for Syntactic and Semantic Dependency Parsing
This paper describes our system for syntactic and semantic dependency parsing to participate the shared task of CoNLL2008. We use a pipeline approach, in which syntactic dependency parsing, word sense disambiguation, and semantic role labeling are performed separately: Syntactic dependency parsing is performed by a tournament model with a support vector machine; word sense disambiguation is per...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملMultilingual Semantic Parsing with a Pipeline of Linear Classifiers
I describe a fast multilingual parser for semantic dependencies. The parser is implemented as a pipeline of linear classifiers trained with support vector machines. I use only first order features, and no pair-wise feature combinations in order to reduce training and prediction times. Hyper-parameters are carefully tuned for each language and sub-problem. The system is evaluated on seven differ...
متن کاملAn Iterative Approach for Joint Dependency Parsing and Semantic Role Labeling
We propose a system to carry out the joint parsing of syntactic and semantic dependencies in multiple languages for our participation in the shared task of CoNLL-2009. We present an iterative approach for dependency parsing and semantic role labeling. We have participated in the closed challenge, and our system achieves 73.98% on labeled macro F1 for the complete problem, 77.11% on labeled atta...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کامل